翻訳と辞書
Words near each other
・ Boolean analysis
・ Boolean circuit
・ Boolean conjunctive query
・ Boolean data type
・ Boolean delay equation
・ Boolean domain
・ Boolean expression
・ Boolean function
・ Boolean grammar
・ Boolean hierarchy
・ Boolean model (probability theory)
・ Boolean network
・ Boolean operation
・ Boolean operations on polygons
・ Boolean prime ideal theorem
Boolean ring
・ Boolean satisfiability problem
・ Boolean-valued
・ Boolean-valued function
・ Boolean-valued model
・ Booleo
・ Booleroo Centre
・ Booley Bay Formation
・ Boolfight
・ Boolgeeda Airport
・ Booligal
・ Boologooroo
・ Booloominbah
・ Boolooroo Shire
・ Boom


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Boolean ring : ウィキペディア英語版
Boolean ring
In mathematics, a Boolean ring ''R'' is a ring for which ''x''2 = ''x'' for all ''x'' in ''R'', such as the ring of integers modulo 2. That is, ''R'' consists only of idempotent elements.
Every Boolean ring gives rise to a Boolean algebra, with ring multiplication corresponding to conjunction or meet ∧, and ring addition to exclusive disjunction or symmetric difference (not disjunction ∨).
==Notations==
There are at least four different and incompatible systems of notation for Boolean rings and algebras.
*In commutative algebra the standard notation is to use ''x'' + ''y'' = (''x'' ∧ ¬ ''y'') ∨ (¬ ''x'' ∧ ''y'') for the ring sum of ''x'' and ''y'', and use ''xy'' = ''x'' ∧ ''y'' for their product.
*In logic, a common notation is to use ''x'' ∧ ''y'' for the meet (same as the ring product) and use ''x'' ∨ ''y'' for the join, given in terms of ring notation (given just above) by ''x'' + ''y'' + ''xy''.
*In set theory and logic it is also common to use ''x'' · ''y'' for the meet, and ''x'' + ''y'' for the join ''x'' ∨ ''y''. This use of + is different from the use in ring theory.
*A rare convention is to use ''xy'' for the product and ''x'' ⊕ ''y'' for the ring sum, in an effort to avoid the ambiguity of +.
Historically, the term "Boolean ring" has been used to mean a "Boolean ring possibly without an identity", and "Boolean algebra" has been used to mean a Boolean ring with an identity. The existence of the identity is necessary to consider the ring as an algebra over the field of two elements: otherwise there cannot be a (unital) ring homomorphism of the field of two elements into the Boolean ring. (This is the same as the old use of the terms "ring" and "algebra" in measure theory.)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Boolean ring」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.